
Math 564: Real analysis and measure theory
Lecture 9

99% lemma. Let (X
,
B
, ul be afinite measure space and let 28 be a collection of sets

whose finite disjoint unions form an algebra generating B. Then each positive
measurest M2 X admits a set Let whose 99 % is M

,
i
.

e
.
ASSO

& Let sit
. M(M1C) =1-2 (think 0. 99) .

M(C)

Proof
. By the uniquen part of Caratherdory's Reorem M = (MIces)* Thus

, M(M) =
intLMIAn) : VAu > M and YAn] ?<23] . By disjointification we may as

same the An are pairwise disjoint ; furthermore, since each An is a finite disjoint unio
of sets in 2

,
we get

MIM) = infin : n = M and 310h : 23.

Using ofnitren , M has a momeas , subset of positive finite measure , so by chris
King M

,
we was asscime but M/M) < 5 .

Then 7\Cm] Et such What

HLr>M and M(M) = 1-3 · By he carrot and soup observation
,
we have

RG(N

M MIM1(r) 21.9 for some keIN.

M((n)

Examples. (a) For LIRY
,
BII

,
X)

,
we take I := boxes

,
heave we get that every positive

measure set contains 99 % of a box C.

(6) For 1A
,
BLAM

, M) ,
where A is finite and h is Bernoulli , we take I := cylinders,

10 every positive measure not contains 9990 of
a licles 2.

Note . In both of these examples , we can take the box/glinder 2 to be arbitrarily
small (both small diameter and small measure because because each box/ylinder partic
tions into arbitrarily small finitely many) boxes/cylinders , heare carrot-soap observation applies.



Application: ergodicity

Def . Let IX
, M) be a measure space and let E be an equivalence relation on X. The

relation E is called ergodic lwet u or Mnergodic if every
E-invariant (i

. e.

union of Exclasses) M-measurable set is mull or couall
.

In other words
,
X is

not recomposible into two E-invariant positive measure sets.

Examples of equiv. rel.
(a) Let ↑ be a ctbl

group acting on a measure space IX
,
B
,
M2 so that 8. B <23

for all NEP and BEL
.

For example translation actions IUIR or QUIR

or dialations [Qo ,) v IRA
.

Then the orbit equire rel on X of His action
I

denoted En and defined by
x Eny :> X and y are in the same i-orbit

: < =>
y = 0 . x for some OEP.

16) Let (X
, B , u) be a measure space and T : X-X not necessarily a bijection .

Typically we will assume thatT is "e-measurable ." Its orbit eg. wel , denoted E,
is defined by :

x Ei y : <= Thx = Thy for some u
,
mE

·

1 --

* We draw an edge .

Then the T-orbits are exactly
x the connected components of this graph , which is the·

Y ↓ x ↓ x
yoaph of t as a culsed of XXX.

1/
orbits of T

Examples of ergodic/nonergodic eg . wel.

(a) Nonergodic . Let VIR by translation : 2 . r : = E + r
,
fr zEX

,
VERR

.
Then the

orbit eye el is just the cost eyel of EIR .

The orbit of yeR in X + 1.



Then A := 10
, 2)+ =Lin , net) is Ex-invariant but it and its complete

have positive measure so Ex is not X-ergodic ,
where X is Lebesgue meas.

Note Mot Ex admits a measurable transversal
,

e
.g.

Co
,

1).

() Ergodic. Let QUIR by translation
,

so its orbits ey . esl . Ex is the cosed eg . rel.

of REIR
. Recall that Ea doesn't admit a measurable transversal

,
and the rea-

on for this is that Ex is ejodic, which we'll preve using the 99 % lemma.

Claim
. Ex is ergodic.

Proof. Suppose otherwise
,
10 Where is a positive measure AIR will B := IRIA of posi-

live measure
. By the 99% Lemma

,
here is a positive measure interval 5 whose 99% is B.

By the 99% lemma again , there is a positive measure interval 1 whose 99% is A and

moreover
,
Ch(l) < Ch(5). A

.
F
..

J
B:..........

10+ I 9+ I 92+ I

Using Kot rationals are dense
,
we can cover - half of 5 by finitely many

pairwise disjoint rational translates of I
,
i
.

e.

4 (i + 1) = 5 and x(LitF =E x(5)iCk

Size U + A = A for all i
,
we have that 93% of each with is still A . So

20
. 5 . 99% of J is A

, contradicting that only 1 % of J is A.

Regularity of measures (approximating with open/closed sets).

Def . Let IX , B , f) be a measure space and X a metric space.
Then he is called regular

it each h-neas , at M salifies :

M(M) = inf(M(u) : US M
open
? lauter regularity)

= sup(M(C) : C = M closed) · (inner regularity
M is called strongly regular if 0 = inf)MIUIM) : UC-M

open,
= inf(MIMC) : CCM closed ]-



Obs
.
All finite regular measures are strongly regular.

Prop . If M is strongly regular, then every measurable set M is In Gr andM Fr ;
more precisely ,

there are a ho set h and an Fr set F such that

FeMEG and F
=
M =

nG
.

Proof
. By strong regularity ,

for each neIN+ Here are an open set Ma and a closed at In

such that Cn>MaUn and MIMICa)
,
MIMa(M) E ·

Let G := 1Dm andF,nEIN

so FEMEG and MIMIE - MIMICa) = - > 0 and M/GIM) = M(U(M) : * -> &
as n -> &, 10 F = rMinh.


